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An Analytical Solution of the Lateral Current
Spreading and Diffusion Problem in Narrow
Oxide Stripe (GaAl)As/GaAs DH Lasers

G. LENGYEL, MEMBER, IEEE, PETER MEISSNER, ERWIN PATZAK, anp K.-H. ZSCHAUER

Abstract—An exact solution is presented to the problem of lateral
current spreading in the resistive layer of oxide stripe geometry DH
lasers. The two-dimensional Laplace equation was solved by conformal
mapping using the Schwarz-Christoffel transformation. The diffusion
equation containing nonlinear recombination terms was solved numer-
ically. Computed examples demonstrate that the customary one-
dimensional treatment of the resistive layer or the assumption of con-
stant current density under the stripe contact are not always justified,
particularly for narrow stripe widths and low specific resistivities. This
region of low values of the resistivity and stripe width, however, is of
great practical interest in the design of oxide stripe lasers having high
thermal stability and kink-free characteristics.

I. INTRODUCTION

ONFINEMENT and guidance of the electromagnetic

(EM) wave is a central problem in the design of efficient
semiconductor lasers which are operated at room temperature
in the CW mode. In GaAs-GaAlAs DH lasers, the EM wave is
confined in the transverse direction by the finite step caused
by the difference in the refractive indices of the two semicon-
ducting materials [1]-[3]. No such firm guiding exists in the
lateral direction in gain-guided stripe geometry DH lasers, where
the spreading of the wave is prevented only by the optical gain
{41, [5] produced by the large carrier densities in strongly
pumped regions of the laser. Important laser operating param-
eters such as threshold current, width of the lateral modes, and
stability of lateral modes are influenced by this lateral guidance
and depend therefore on the lateral distribution of carriers and
of the optical gain. The gain profile, on the other hand, is
determined by the distribution of the pumping current which,
below lasing threshold is affected by the following two physical
processes:

1) lateral diffusion of carriers in the active region,

2) lateral current spreading in the resistive layer lying be-
tween the contact and the active region.

Above the lasing threshold, a third factor is added to the
previous considerations, namely the stimulated recombination
which is a function of the photon density profile of the EM
wave.

The importance of lateral distributions was recognized early
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in the development of DH lasers [6]-[17]. All authors treat
the series resistance effects approximately either by averaging
over the thickness of the resistive layer (various sheet-resistance
models), weighted averaging using simple functions [13], or
correction factors [18] reducing the representation of the
resistive layer to a single dimension. Others {8], [12], [13]
employ assumed distributions of the pumping current density
along the contact stripe or the p-n interface. With the excep-
tion of [16] all express the relationship for the potential
across the junction in terms of current density rather than
carrier density. None of the authors gives an exact solution
for the current density distribution under the stripe contact.

A common shortcoming of these models is the essentially
one-dimensional treatment of the resistive layer. As long as
stripe width to resistive layer thickness ratios are relatively
large, such approximations are permissible. It has become
evident, however, over the last few years, that planar oxide
stripe lasers having relatively large stripe width display kinks
in their light-current characteristics tend towards instabilities
or filamentation. These problems can only be avoided with
very narrow stripe widths (X3 u) [19], but in this case the
above-mentioned ratio decreases to about 1.5. The develop-
ment and the proper design of such lasers requires, therefore,
an exact solution of the current spreading in the resistive
layer. Such a solution is presented in this paper.

The mathematical treatment of the problem requires the
simultaneous solution of the following two boundary value
problems:

1) the diffusion equation for the carrier density in the
active region,

2) Laplace’s equation which governs the current flow in the

resistive region.
These two partial differential equations are coupled to each
other by the relationship of the injecting p-n junction. For
the geometries we wish to consider here, Laplace’s equation
has to be solved in its two-dimensional form, while the diffusion
equation can be reduced to one dimension. This simplification
is made possible by the extremely small thickness of the active
layer [20].

There are different techniques for the solution of Laplace’s
equation. First, one could use the finite element method which
would provide a numerical solution. Second, it is possible to
convert the boundary value problem into integral equations
containing functions which are defined on the boundaries. As
we are interested in potentials and current densities only at the
boundaries, this technique becomes economical when used in
actual numerical computation. We have actually used the
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method of integral equations for the solution of this problem
and obtained results very similar to the ones presented here.
In this paper however, we use a third technique, that of con-
formal mapping, which is more applicable in this case and which
is made possible by the relative simplicity of the geometry of
the problem. This method provides an exact solution of the
two-dimensional Laplace equation and is therefore superior to
those mentioned above. The result expresses the current dens-
ity distribution along the junction plane in terms of an arbitrary
potential distribution along the same plane. It is valid for any
stripe width to resistive layer thickness ratio. Any relationship

between potential and carrier density at the p-n junction can

be used, such as the customary Boltzmann approximation or
the Fermi-Dirac formula as-in [16]. The diffusion equation
was solved numerically employing nonlinear spontaneous
recombination terms applicable to bimolecular recombination.
An iterative process led to a self-consistent solution to both
problems. A short overview of this problem and its solution
has already been given in [21].

II. ANALYSIS

_ The geometry studied is shown in Fig. 1. The current sup-
plied by the positively biased stripe contact has to pass through
a resistive layer to reach the active region. The planesaty =o
and y =-~d are GaAs-GaAlAs heterojunctions, one of which is
the injecting p-n interface. The resistive layer is usually p-
doped, the active region can be either p- or n-doped. In the
conventional laser structure, the resistive region consists most
often of two layers: p-doped GaAlAs adjacent to the active
region and p-doped GaAs near the metal contact. This practice
which is used to improve the contactisnot a necessity. We have
fabricated lasers successfully contacting directly to the GaAlAs
cladding layer. Therefore, in this paper tlie resistive layer was
assumed to be homogeneous and was characterized by a single
resistivity o. When the resistive region consists of two layers,
this assumption is equivalent to. neglecting the effects of the
GaAs-GaAlAs p-p heterojunction, a reasonable assumption ‘at
the doping concentrations involved and taking the resistivities
of the two layers to be equal. The spreading resistance in the
substrate was neglected; as it is much lower than that of the
resistive region and has. little influence on the current distribu-
tion in stripe geometry lasers, Thus, the n-side of the p-n
heterojunction was assumed to act as an equipotential sink.
The carrier distribution in the active region which will finally
determine the optical gain profile can be obtained by solving
the diffusion equations for electrons and holes, respectively.
Considering the fact that vatiations in the y-direction are

extremely small in the very thin active region, integration of

the continuity equations over the y-coordinate yields the
following:

an 1 a]xn ]( )

e ox - fo )+ )
op __l a']Axp ]( )

3 e ox fy+

n(x) and p(x) represent the electron and hole concentrations
in the active region, which in this case is assumed not to be
doped. This does not represent any limitation of the technique,
the method discussed below is equally applicable to doped
active regions. f represents the recombination term and j(x)
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Fig. 1. Simplified geometry of the oxide-stripe laser diode.

the current density injected in the active region. jy, and jyp
are the electron and hole current densities, respectively, which
are directed in the x-direction. Considering the fact-of charge
neutrality and using terms for the current densities in the x-
direction, one obtains the ambipolar diffusion equation for
the steady state '

62 f()+1()

where D is the ambipolar diffusion coefficient. The diffu-
sion coefficient may in general depend on the carrier distribu-
tion. We use the following recombination term in our calcu-
lations:

f(n)=Bn? +
™D

where B is the bimolecular recombination constant and 75, is
the spontaneous recombination lifetime.

The current density j(x) ties the diffusion problem to the
current flow problem of the resistive region which is governed
by Laplace’s equation

%u  0%u

—5=0.

Fe . 3)

u(x, y) is the potential inside or on the boundaries of the resis-
tive region. The current density at any point in the resistive
region is given by

pj=-Vu. ’ (4
Boundary conditions for (3) can be listed as '
aty=a and -5/2 <x <s/2, u=0 (5a)
aty=a and —°°<x<~s/is/2<x<°°, g;—o
(5b)
aty=0,  w=Unx)]. (5¢)

The potential Uln(x)] is equal to the voltage applied to the
terminals of the diode minus the voltage drop across the p-n
junction. The latter drop is given by

kgT "B,
V=—"" 7 () +nz(n)+k~—

sl

My, are the quasi-Fermi levels measured from the valence and
conduction bands, respectively, divided by kgT. '

The quasi-Fermi levels are functions of the carrier density.
For the values of injected. carrier density which are typical for
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the type of laser considered here, the quasi-Fermi levels are
some kpT inside the conduction band and about % kgT inside
the valence band. For this reason, one has to take into account
deviations from the Boltzmann distribution. Therefore we
use an expression for the relation between the quasi-Fermi
level  and the density, which was given in [22].

4 .
M2~ l:ln nINi2)+ > a,-(n/Nl’z)’] . (6)
i=1
Ny , are the effective densities of states for the conduction
band and the valence band, respectively. The formula was
proved to be valid for our data. '

Our task is to find the solutions of (2) and (3) with bound-
ary conditions (5a)-(5d). As the two problems are so inti-
mately linked to each other through the boundary conditions,
one would have to find solutions simultaneously for both. For
practical computations however, it seemed more advantageous
to separate the two problems and first find solutions for only
one of them. One can employ trial functions for some of the
unknowns which appear in both problems and then check the
correctness of these trial functions by solving the second prob-
lem. Comparison between result and trial function leads to an
improved trial function with which the whole computation is
repeated until a self-consistent solution to both problems is
found. '

A. Solution of the Two Dimensional Boundary Value
Problem for the Current Density Distribution ( Laplace
Equation)

The solution was accomplished by the method of conformal
mapping applicable to doubly connected regions [23]. It is
assumed that the distribution of the potential U(x) at the p-n
junction is known and that the distribution of the current
density at the junction has to be calculated. Since no current
can flow through the oxide stripe, there is aline of flux directly
along the junction between the resistive region and the oxide.
Thus, the normal derivatives of the potential vanish there.
This can be assured by reflection of the p-n junction at the
oxide plane [Fig. 2(a)].

Since we have to deal with a doubly connected region, we
have to solve this problem with the aid of the Schwarz-Chris-
toffel transformation applicable to this case. By this transfor-
mation, the region is mapped into a period parallelogram, in
which the potential problem can be solved easily. Fig. 2(a)
gives the original and (b) gives the mapped configuration.
Equivalent points are labeled with the same numbers. The
mapping is chosen in such a way that the p-n junction is
mapped on the lower line and the contact stripe on the upper
side of the period parallelogram which because of the simple
geometry becomes a rectangle. The choice of the points 2, 4,
6, 8 is taken for reasons of symmetry. The derivation of the
transformation given in (7) is carried out in Appendix A.

1
2K (k%)

w(z) = i— + mt (e T[20)6242) g2y @)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 4, APRIL 1982

/U(x) 7
‘s
p-n junction 1 =0 z-plane
. ] 8
6 S
! \(ontuct stripe
\ a 4
\'.
\
“ l\ y r
. x)
(a)
7 6 S 8 7
: i A A
' "
: t
v! I%l \'Hinne
¥
L T :
o Y wm 2 an, 1
3 [S 1 2 3

(b}

Fig. 2. Configuration of resistive layer (a) after reflection and (b) after
mapping onto a period rectangle by the Schwarz~Christoffel "
transformation.

with

! 2
K*=1-¢™% and 7=i Ili'((/‘];))

where K is the complete elliptic integral of the first kind [24]
for argument k, K' is the associate integral corresponding to K
and tn~'(y, k) is the inverse of the Jacobian elliptic function
[24]. ,

We now have to solve the boundary value problem for the
infinite long stripe of height |7/2| and for periodic boundary
values with periodicity one.

The complex potential for this problem can be written as

PW)=C+Dw+3 (A4e ™" + B 2™ (8)
n
The complex coefficients C, D, 4,,, B, have to be chosen in a

way that the real part of P(w) fulfills the boundary conditions.
We leave out the explicit calculations and only give the result

. K
P(w)=c¢q <1 + 211? W)

+3 cop ‘:cos (4mnw) + coth (27m EK,) sin (41mw)]

n=1

©)
3/4
co =2 J‘ U(u) du
1/2
3/4
Can =4‘( U(u) cos (4nnu) du. (10)
1/4
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The current injected into the active region is proportional to
the y-component of the electric field which we can get from

©)

) 1 ¥t _

i = — — + e~Gr2a)(1 2x/[s)
j)= By = e {[1+e ]
. [1 + e—(s1r/2a)(1+2x/a)] }1/2 . {2_11;

= K’
D capdmn coth <2ﬂn E) cos (4mn u(x))} .

L
[
()

We have used the fact that the coefficient ¢, can be expressed
- with the total current [ as

Co=p ——. o (12)

Some aspects of the numerical evaluation of the series in (1 D)
are discussed in Appendix B.

B. Solution of the Diffusion Equation

The diffusion equation is a nonlinear differeritial equation
for which no analytic solution is available. We solved the
equation numerically by a “shooting” method integrating the
differential equation using an adaptive Romberg extrapolation.
The initial value (dn/dx) at x = 0 is zero for reasons of sym-
metry. The value of #n(0) = ny has to be found in such a way
that n(x) fulfills the boundary condition

lim [n(x)] = 0.

X—roo

This completes the solution of the two boundary value prob-
lems which describe the operating conditions of the laser below
or slightly above threshold when stimulated recombination is
not yet significant. Stimulated recombination can be included
in this model by adding a stimulated recombination term to
the diffusion equation (2). This term requires the knowledge
of the photon-field distribution which in turn can be obtained
from the solution of the EM wave equation, for which this
model supplies accurate gain profiles. Such complete calcula-
tions have already been carried out successfully using this
model. :

III. RESULTS AND DISCUSSIONS

The influence of several geometrical and physical parameters
on the solutions was studied in detail. In this respect, the
magnitude and shape of the various distributions (current- and
carrier-densities) deserve attention. The basic set of parameters
used in the calculation are summarized in Table I. Material
constants such as D, B, and 7 were taken from measurements
and these values seem to descrlbe well the transient behavior
of our lasers.

Fig. 3 shows, for the parameters of Table I, the distribution
of the carrier density in the active region n, the current density
at the p-n junction 7, and the currerit density at the stripe
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TABLE I
0028 -cm D=40cm?/s
s=3um © B=9.7X 1071 cm3/s
a=2pum - 7p=18x 107835
d=0.1um T=300K
I=100mA . -
i
121 neared)
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Fig. 3. Current- and carrier-density -distributions for data of Table I.

© J current density injected into active region;j: current density along

stripe contact.

contact j;. A characteristic feature of this and all other solu-
tions- supplied by this model is the singularity in j; at *+s/2
which has not been pointed out by previous authors and may
have practical consequences for contact fabrication. Further-

.more, the variation of the current density j along the p-n

junction is smooth and free from discontinuities in its higher
derivatives at £s/2 which appear in many solutions where the
region is arbitrarily divided into two parts: one below the
contact stripe and one outside it.

Fig. 4 shows the effect of stripe width on the current density
along the p-n junction. At larger stripe width, the distribution
has a local minimum in the center which has not been recog-
nized by previous authors and which is caused by thé nonlinear
boundary condition introduced by the p-n junction.. This local
minimum appears at narrower stripe w1dths as well but only at
lower resistivities.

Fig. 5 shows the effect of the thickness of the resistive layer
on the current density along the p-n junction. The form of
these distributions depends principally on the s/a ratio
[see (11)] as long as the influence of the potential distribution

along the junction is negligible, that is when the specific resis-
tivity is relatively high. ‘ '

A central problem in the design of oxide-stripe lasers is the
assurance of firm lateral guidance of the EM wave which is
provided by the gain profile. The curvature at the center
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Fig. 4. Current density distributions injected into active region as a
function of stripe width. All other parameters are as in Table .
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Fig. 5. Current density distributions injected into the active region as a
function of the thickness of the resistive layer. All other parameters
are as in Table 1.

d*gldx®| .-, is a measure of how well the laser resists the
flattening of this profile at higher outputs when spatial hole
burning depletes the carriers in the center [16]. When this
curvature becomes zero or negative, guidance ceases and kinks
or instabilities appear in the light-current characteristics. The
requirement d>g/dx*| .-, > 0 also means in first approximation
that d*n/dx?|-¢ > 0.

Fig. 6 shows the variation of d*n/dx?| 1o = n''(0) as a func-
tion of stripe width. The decrease is practically exponential
indicating that narrow stripe widths significantly improve the
lateral guidance.

The effect of the specific resistivity p is shown in Fig. 7. All
three curves begin to saturate above p > 0.3 £ -cm. Above
this value, the effect of the p~-n junction on the solution of the
potential problem becomes negligible, and the solution of the
two problems can be separated from each other. The exact
solution of the potential problem is then given by the simpler
first part of (11) as the second, containing the potential,
vanishes as p = %, This j(x) serves then as the driving function
of the diffusion problem. Below p~ 0.3 € -cm, all three
curves decrease rapidly. The decrease of n"(0Q) points to a
dilemma because of the above-mentioned reasons of stability.
Low resistivities are desirable nevertheless to reduce ohmic
losses and improve temperature and aging characteristics. The
compromise between the conflicting requirements of low
thermal losses and good lateral guidance must necessarily lead
to narrow stripe widths. The validity of these considerations
was proven by the fact that it was possible, using these princi-
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Fig. 7. Effect of the specific resistivity on some laser parameters.
Other data are as in Table L.

ples, to develop narrow-oxide-stripe lasers with outstanding
temperature stability (up to 120 °C) extremely low aging
(107 h™! at 100 °C) and smooth, kink-free characteristics up
to over 100 mW/facet in pulsed operation [25]. The effect of
the variation of other parameters was also studied, but the
results were less interesting and do not warrant detailed discus-
sion. One might mention that the variation of the ambipolar
diffusion constant D results only in minor changes, indicating
that the assumption of a constant D is justified, although
strictly speaking, ambipolar diffusion can only be described by
density-dependent diffusion constants.

The effect of B and 7p on the results, within a region of
reasonable values, was found negligible. The same applies to
the temperature dependence of the voltage across the p-n
junction.

IV. SUMMARY AND CONCLUSIONS

Analysis of lateral guidance in stripe geometry DH lasers
requires the knowledge of the lateral distribution of the com-
plex refractive index which is proportional in first order to the
charge carrier density present in the active region. A complete
solution of this problem requires knowledge of the carrier
density distribution which can be obtained by the simulta-
neous solution of two boundary value problems: the diffusion
equation for the carriers in the active region and Laplace’s
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equation for the current distribution in the resistive layer.
These two boundary value problems are coupled by a nonlinear
relation at one of the boundaries. In this work, an exact solu-
tion of the two-dimensional Laplace equation is given. The
result expresses the current density distribution along the
junction plane in terms of an arbitrary potential distribution
along the same plane. The mathematical technique is applica-
ble to any stripe width to resistive layer thickness ratio. Any
relationship between potential and carrier density at the p-n
junction can be used, such as the customary Boltzmann ap-
proximation or the more accurate Fermi-Dirac formula. The
diffusion equation was solved numerically employing nonlinear
spontaneous recombination terms applicable to bimolecular
recombination. An iterative process led to a self consistent
solution to both problems,

One of the results of the calculation was the recognition that
the current density supplied by the stripe contact has an
integrable singularity at the two edges of the stripe. Further-
more, local minima may appear in the center of the current
density distribution injected into the active region particularly
at low resistivities and wide stripe widths,

The calculations point towards the need of finding a suitable
compromise in choosing the specific resistivity of the resistive
region. On the one hand, one would require low resistivities in
order to reduce ohmic losses and temperature rise. Resistance
to spatial hole burning and ensuring kink-free characteristics,
on the other hand, call for higher specific resistivities. A satis-
factory compromise can only be found when very narrow
stripe widths are chosen.

In sheet-resistance models, which are used widely according
to the published literature, the behavior of the current density
distribution is characterized, among other things, by the
sheet resistance p/a. Our solutions show otherwise; p, @ and
other geometrical factors influence the solutions indepen-
dently. The results further indicate that the usual assumptions
about the current distribution and the one-dimensional treat-
ment of the resistive layer are not always justified, particularly
for low values of p and s. This region of p and s values, how-
ever, is exactly the one of great practical interest if one
wishes to design oxide-stripe lasers having high temperature
stability and kink-free light-current characteristics. For larger
values of the resistivity (0 > 0.3 cm) the solution of the po-
tential and diffusion problems can be separated from each
other. The current density distribution along the injecting
interface can then be approximated by a relatively simple:
expression, which is also the exact solution of the potential
problem for p = oo,

APPENDIX A

The transformation mapping the configuration of Fig. 2(a)
into the periodic rectangle of Fig. 2(b) is

Z(W)zcl Jﬁ [ﬁl(w_ du’T)(aM-l)/ﬂ]—l
Mm=1

R - -
T [Balw- e,,,'r)(’g” 1)/Tr] Ydw+ G, (A1)
v=1
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TABLE II
THE CoNSTANTS OF THE CONFORM MAPPING

M 1 2 3 L
a, 12 3/4 ! 174
au n o T (o]
5 & 7 8

z, Ja Fs/243a 12 -s/2-ja
e, 1/2 14 ! 3/4
Bv b 2T m 2n

04,4 is the &, 4 function of Weierstral, n is the number of
points on the lower line and m is the number of points on the
upper line of the periodic rectangle. The angles o, and 3, are
the interior angles of the original configuration, the constants

d,, e, are the x-coordinates in the w plane and Cy, C, are
complex constants. The values of the constants are given in
Table II. ‘

The resulting {ransformation is

w
z(w)—"-Clj It w- 3,197 (w-2.,7)
0

“Oa(w-F,7) 0a(w~ 3, 7)dw+ G, (A2)

The following equations determine the unknown constants Cy,
Cy, 7 [19]:

z(w)=z(w+ 1) (A3)
z(w+r)=z(w)+2a (A4)
2(0) = 2ja (AS)
z(r/2+ 3) = ja+s/2. (A6)

Wé have eight real equations for five real parameters. There
are more equations than unknown constants because of the
assumption of symmetry. Since the integrand is a double
periodic function, it can be expanded in the { function of
Weierstra} [24]

z(w)=Bj[§(w+%,T)~§‘('r/2+i,7')

- tw= 1, 1)+ @2, 1] dw+ Gy
The integral yields

§10M~ éaT)

=-B1
U wo e

(A7)

The unknown constants such as B, D, and 7 can be determined
using the equations (A3)-(A6). The result is

z(w)=s/2+ Zﬂ_‘} In [mQKE)w- 1), k)]
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with

k2=1-¢T8/a,

APPENDIX B

The numerical evaluation of (11) presented some problems
as the series in the second term converges only slowly. A way
out of this difficulty is the splitting of the series

!

° K
> Cyué4mncoth (27m —k—)cos (4rnu(x)) (B1)
n=1

into the following two parts:

’

i C,, 4nn [coth <2Trn %)— 1] cos (4mnu(x)) (B2)

+ 3 Cypdmn cos (dmnu(x)).

n=1

(B3)

coth (4nnK'[K)- 1 is rapidly decreasing with n and we only
have to calculate a few coefficients ¢,, for this part of the
series. The second part can be converted into a more suitable
form. We notice that

D" Cop dmn cos (dmnu(x))
n=1
is the imaginary part of

> can dani e MUY = F(y),

n=1

(B4)

The real part of F(u) is the derivate of the potential at the
active layer (apart from a factor du/dx). Because F(u) is
analytic in the upper half-plane we can calculate the imaginary
part from the known real part with the aid of the Hilbert
transformation.

GLOSSARY OF SYMBOLS

a thickness of the resistive region,

B quadratic recombination constant,

D: ambipolar diffusion constant,

e: elementary charge,

Eg: bandgap,

f(n): recombination term,

i imaginary unit,

I: current,

j: current density,

Txn: x-component of the electron current density,

x-component of the hole current density,
k: modulus of elliptic integral,

kg: Boltzmann’s constant,

K(k): complete elliptic integral of the first kind,

K'(k): associated complete elliptic integral of the first
kind,

l: length of the laser,

n: electron density,

Nia effective densities of state for electrons and holes,

respectively,
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p: hole density,

P(w): complex potential,

s: stripe width,

tn” Yy, k): inverse of the Jacobian elliptic function,

T: temperature,

ux,y): potential,

U(n(x)):  potential at the active region-resistive region
interface,

V: voltage drop across the active region,

oy interior angles in the z-plane,

By interior angles in the z-plane,

¢: ¢ function of Weierstra},

M2 quasi-Fermi levels for electrons and holes,

V1.4 ¥ 4 functions of Weierstraf,

p: specific resistance,

T width of the period rectangle,

TD! spontaneous recombination lifetime.
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