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An Analytical Solution of the Lateral Current
Spreading and Diffusion Problem in Narrow

Oxide Stripe (GaAl)As/GaAs DH Lasers

G. LENGYEL, MEMBER, IEEE, PETER MEISSNER, ERWIN PATZAK, AND K.-H. ZSCHAUER

Abstract–An exact solution is presented to the problem of lateral

current spreading in the resistive layer of oxide stripe geometry DH

lasers. The two-dimensional Laplace equation was solved by conformal

mapping using the Schwarz-Christoffel transformation. The diffusion

equation containing nonlinear recombination terms was solved numer-

ically. Computed examples demonstrate that the customary one-

dimensiomd treatment of the resistive layer or the assumption of con-

stant current density under the stripe contact are not always justified,

particularly for narrow stripe widths and low specific resistivities. This

region of low values of the resistivity and stripe width, however, is of

great practical interest in the design of oxide stripe lasers having high

thermal stability and kink-free characteristics.

I. INTRODUCTION

c ONFINEMENT and guidance of the electromagnetic

(EM) wave is a central problem in the design of efficient

semiconductor lasers which are operated at room temperature

in the CW mode. In GaAs-GaAIAs DH lasers, the EM wave is

confined in the transverse direction by the finite step caused
by the difference in the refractive indices of the two semicon-

ducting materials [1] - [3]. No such firm guiding exists in the

lateral direction in gain-guided stripe geometry DH lasers, where

the spreading of the wave is prevented only by the optical gain

[4] , [5] produced by the large carrier densities in strongly

pumped regions of the laser. Important laser operating param-

eters such as threshold current, width of the lateral modes, and

stability of lateral modes are influenced by this lateral guidance

and depend therefore on the lateral distribution of carriers and
of the optical gain. The gain profile, on the other hand, is

determined by the distribution of the pumping current which,

below lasing threshold is affected by the following two physical

processes:

1) lateral diffusion of carriers in the active region,

2) lateral current spreading in the resistive layer lying be-
tween the contact and the active region.

Above the Iasing threshold, a third factor is added to the

previous considerations, namely the stimulated recombination

which is a function of the photon density profile of the EM

wave.

The importance of lateral distributions was recognized early
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in the development of DH lasers [6] - [17]. All authors treat

the series resistance effects approximately either by averaging

over the thickness of the resistive layer (various sheet-resistance

models), weighted averaging using simple functions [13 ], or

correction factors [18] reducing the representation of the

resistive layer to a single dimension. Others [8] , [12] , [13]

employ assumed distributions of the pumping current density

along the contact stripe or the p-n interface. With the excep-

tion of [16] all express the relationship for the potential

across the junction in terms of current density rather than

carrier density. None of the authors gives an exact solution

for the current density distribution under the stripe contact.

A common shortcoming of these models is the essentially

one-dimensional treatment of the resistive layer. As long as

stripe width to resistive layer thickness ratios are relatively

large, such approximations are permissible. It has become
evident, however, over the last few years, that planar oxide

stripe lasers having relatively large stripe width display kinks

in their light-current characteristics tend towards instabilities

or filamentation. These problems can only be avoided with

very narrow stripe widths (<3 U) [19], but in this case the

above-mentioned ratio decreases to about 1.5. The develop-

ment and the proper design of such lasers requires, therefore,

an exact solution of the current spreading in the resistive

layer. Such a solution is presented in this paper.

The mathematical treatment of the problem requires the

simultaneous solution of the following two boundary value

problems:

1) the diffusion equation for the carrier density in the

active region,

2) Laplace’s equation which governs the current flow in the

resistive region.

These two partial differential equations are coupled to each

other by the relationship of the injecting p-n junction. For

the geometries we wish to consider here, Laplace’s equation
has to be solved in its two-dimensional form, while the diffusion

equation can be reduced to one dimension. This simplification

is made possible by the extremely small thickness of the active

layer [20] .

There are different techniques for the solution of Laplace’s

equation. First, one could use the finite element method which

would provide a numerical solution. Second, it is possible to

convert the boundary value problem into integral equations

containing functions which are defined on the boundaries. As

we are interested in potentials and current densities only at the

boundaries, this technique becomes economical when used in

actual numerical computation. We have actually used the
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method of integral equations for the solution of this problem

and obtained results very similar to the’ ones presented here.

In this paper however, we use a third technique, that of con-

formal mapping, which is more applicable in this case and which

is made possible’ by the relative simplicity of the geometry of

the problem. This method provides an exact solution of the

two-dimensional Laplace equation and is therefore superior to

those mentioned above. The result expresses the current dens-

ity distribution along the junction plane in terms of an arbitrary

potential distribution along the same plane. It is valid for any

stripe width to resistive layer thickness ratio. Any relationship

between potential and carrier density at the p-n junction can

be used, such as the customary Boltzmann approximation or

the Fermi-Dhac formula as in [16]. The diffusion equation

was solved numerically employing nonlinear spontaneous

recombination terms applicable to bimolecular recombination.

An iterative process led to a self-consistent solution to both

problems. A short overview of this problem and its solution

has already been given in [21].

II. ANALYSIS

The geometry studied is shown in Fig. 1. The current sup-

plied by the positively biased stripe contact has to pass through

a resistive layer to reach the active region. The planes at y = o

and y = -d are GaAs-GaAIAs heterojunctions, one of which is
the injecting p-n interface. The resistive layer is usually p-

doped, the active region can be either p- or n-doped. In the

conventional laser structure, the resistive region consists most

often of two layers: p-doped GaAIAs adjacent to the active

region and p-doped GaAs near the metal contact. This practice

which is used to improve the contact is not a necessity. We have

fabricated lasers successfully contacting directly to the GaAIAs

cladding layer. Therefore, in this paper the resistive layer was

assumed to be homogeneous and was characterized by a single

resistivity p. When the resistive region consists of two layers,

this assumption is equivalent to neglecting the effects of the

GaAs-GaAIAs p-p heterojunction, a reasonable assumption ‘at

the doping concentrations involved and taking the resistivities

of the two layers to be equal. The spreading resistance in the

substrate was neglected; as it is much lower than that of the

resistive region and has little influence on the current distribu-

tion in stripe geometry lasers. Thus, the n-side of the p-n

hetetojunction was assumed to act as an equipotential sink.

The carrier distribution in the active region which will finally

determine the optical gain profile can be obtained by solving

the diffusion equations for electrons and holes, respectively.

Considering the fact that variations in the y-direction are

extremely small in the very thin active region, integration of

the continuity equations over the y-coordinate yields the

following:

an 1 ajxn
–—-f(n)+~

X_=e ax
(1)

ap 1 djXP j(x)
e ~-.f(P)+~.—.-—

at

n(x) and p(x) represent the electron and hole concentrations

in the active region, which in this case is assumed not to be

doped. This does not represent any limitation of the technique,

the method discussed below is equally applicable to doped
active regions. j’ represents the recombination term and j(x)
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Fig. 1. Simplified geometry of the oxide-stripe laser diode.

the current density injected in the active region. jxn and jxp

are the electron and hole current densities, respectively, which

are directed in the x-direction. Considering the fact of charge

neutrality and using terms for the current densities in the X-

direction, one obtains the ambipolar diffusion equation for

the steady state

w

where D is the ambipolar ‘diffusion coefficient. The diffu-

sion coefficient may in general depend on the carrier distribu-

tion. We use the following recombination term in our calcu-

lations:

f(n) = Bn2 + ~

where B is the bimolecular recombination constant and TD is

the spent aneous recombination lifetime.

The current density j(x) ties the diffusion problem to the

current flow problem of the resistive region which is governed

by Laplace’s equation

azu a2 u
—=0.

axz + a~2
(3)

U(X, y) is the potential inside “or on the boundaries of the resis-

tive region. The current density at any point in the resistive

region is given by

+
pj = - Vu. (4)

Boundary conditions for (3) can be listed as

aty=a and -s/2 <x <s/2, u = O (5a)

au
aty=a and –~<x<–s/2, s/2<x <~, -o

~-

(5b)

aty=O, u = U[n(x)]. (5C)

The potential U[n (.x)] is equal to the voltage applied to the

terminals of the diode minus the voltage drop across the p-n

junction. The latter drop is given by

k~ T

[

‘ Eg
v.— q1(n)+v2(n)+—

e 1kBT ‘
(5d)

VI, 2 are the quasi-Fermi levels measured from the valence and
conduction bands, respectively, divided by kET.

The quasi-Fermi levels are functions of the carrier density.

For the values of injected carrier density which are typical for
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the type of laser considered here, the quasi-Fermi levels are

some kBT inside the conduction band and about ~ kBT inside

the valence band. For this reason, one has to take into account

deviations from the Boltzmann distribution. Therefore we

use an expression for the relation between the quasi-Fermi

level q and the density, which was given in [22] .

[ 17?1,2 = in (~/N1 ,2) + ~ CIi(~/~1,2)i
izl

(6)

IVl, * are the effective densities of states for the conduction

band and the valence band, respectively. The formula was

proved to be valid for our data.

Our task is to find the solutions of (2) and (3) with bound-

ary conditions (5a)-(5d). As the two problems are so inti-

mately linked to each other through the boundary conditions,

one would have to find solutions simultaneously for both. For

practical computations however, it seemed more advantageous

to separate the two problems and first find solutions for only

one of them. One can employ trial functions for some of the

unknowns which appear in both problems and then check the

correctness of these trial functions by solving the second prob-

lem. Comparison between result and trial function leads to an

improved trial function with which the whole computation is

repeated until a self-consistent solution to both problems is

found.

A. Solution of the Two Dimensional Boundary Value

Problem for the Current Density Distribution (Laplace

Equation)

The solution was accomplished by the method of conformal

mapping applicable to doubly connected regions [23]. It is

assumed that the distribution of the potential ~(x) at the p-n

junction is known and that the distribution of the current

density at the junction has to be calculated. Since no current

can flow through the oxide stripe, there is a line of flux directly

along the junction between the resistive region and the oxide.

Thus, the normal derivatives of the potential vanish there.

This can be assured by reflection of the p-n junction at the

oxide plane [Fig. 2(a)] .

Since we have to deal with a doubly connected region, we

have to solve this problem with the aid of the Schwarz-Chris-

toffel transformation applicable to this case. By this transfor-

mation, the region is mapped into a period parallelogram, in

which the potential problem can be solved easily. Fig. 2(a)

gives the original and (b) gives the mapped configuration.
Equivalent points are labeled with the same numbers. The

mapping is chosen in such a way that the p-n junction is

mapped on the lower line and the contact stripe on the upper

side of the period parallelogram which because of the simple

geometry becomes a rectangle. The choice of the points 2,4,

6, 8 is taken for reasons of symmetry. The derivation of the

transformation given in (7) is carried out in Appendix A.

1
w(z) =~+—

4 2K(k2)
tn-l (e (~/Za)(S/z+z), k’2) (7)
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Fig. 2. Configuration of resistive layer (a) after reflection and (b) after

mapping onto a period rectangle by the Schwarz-Christoffel
transformation.

where K is the complete elliptic integral of the first kind [24]

for argument k, K’ is the associate integral corresponding to K

and tn’1 (y, k) is the inverse of the Jacobian elliptic function

[24] .

We now have to solve the boundary value problem for the

infinite long stripe of height 17/2 I and for periodic boundary

values with periodicit y one.

The complex potential for this problem can be written as

P(w) = C+ Dw + ~(Anei2”wn +B,,e-i’”w”). (8)
n

The complex coefficients L’, D, An, Bn have to be chosen in a

way that the real part of P(w) fulfills the boundary conditions.

We leave out the explicit calculations and only give the result

‘(w)’c++2i$w)
‘[ ( ‘)’ 1

+~C2n cos (4mnw) + coth 2rrn ~ sm (4nnw)
~=1

(9)

f

3/4

CO=2 U(U) du
1/2

J
3/4

C’n = 4 u(u) Cos (47rnu) du.
1/4

(lo)
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The current injected into the active region is proportionalto

the y-component of the electric field which we can get from

(9)

}(~)=~ Ey(x) = & {[1 + ~-(sn/2a)(l-2x/s)l

{
. [1+ ~-(sfl/2@(l +Wa)] }1/2 . 21

1

+ L ~ czn4nn coth
() I
27rn ~ cos (47rn u(x)) .

P ~=~

(11)

We have used the fact that the coefficient co can be expressed

with the total current 1 as

K’ I

cO=p IT’
(12)

Some aspects of the numerical evaluation of the seriesin(11)

are’discusst?d in Appendix B.

B. Solution of the Diffusion Equation

The diffusion equation is a nonlinear differeritial equation

for which no analytic solution is available, We solved the

equation numerically by a “shooting” method integrating the

differential equation using an adaptive Romberg extrapolation.

The initial value (&r/dx) at x = O is zero for reasons of sym-

metry. The value of n(0) = no has to be found in such a way

that n(x) fulfills the boundary condition

lim [n(x)] ~ O.
x-+-

This completes the solution of the two boundary value prob-

lems which describe the operating conditions of the laser below

or slightly above threshold when stimulated recombination is

not yet significant. Stimulated recombination can be included

in this model by adding a stimulated recombination term to

the diffusion equation (2). This term requires the knowledge

of the photon-field distribution which in turn can be obtained

from the solution of the EM wave equation, for which this

model supplies accurate gain profiles. Such complete calcula-

tions have already been carried out successfully using this

model.

III. RESULTS AND DISCUSSIONS

The influence of several geometrical and physical parameters

on the .solutioos was studied in detail. In this respect, the

magnitude and shape of the various distributions (current- and

carrier-densities) deserve attention. The basic set of parameters

used in the calculation are summarized in Table I. Material

constants such asD, B, and rD were taken from measurements

and these values seem to describe well the transient behavior

of our lasers.

Fig. 3 shows, for the parameters of Table I, the distribution

of the carrier density in the active region n, the current density

at the p-n junction j, ~d the current density at the stripe

467

TABLE I

p=0,2fl. cm D = 40 cm2/s

s=3gm B = 9.7 X 10–11 cm3/s

a= 2pm 7D= 1.8 X 10-8 S

d= O.lpm T=300K

Z= 10omA

12

10

8

j
[kAlci?]

Fig. 3. Current- and carrier-density distributions for data of Table L

j: current density injected into active region;js: current density along
stripe contact.

contact js. A characteristic feature of this and all other solu-

tions supplied by this model is the singularity in js at ts/2

which has not been pointed out by previous authors and may

have practical consequences for contact fabrication. Further-

,more, the variation of the current density j along the p-n

junction is smooth and free from discontinuities in its higher

derivatives at *s/2 which appear in many solutions where the

region is arbitrarily divided into two parts: one below the

contact stripe and one outside it.

Fig. 4 shows the effect of stripe width on the current density

along the p-n junction. At larger stripe width, the distribution

has a local minimum in the center which has not been recog-

nized by previous authors and which is caused by the nonlinear

boundary condition introduced by the p-n junction. This local

minimum appears at narrower stripe widths as well but only at

lower resistivities.

Fig. 5 shows the effect of the thickness of the resistive layer

on the current density along the p-n junction. The form of

these distributions depends principally on the s/a ratio

[see (1 1)] as long as the influence of the potential distribution

along the junction is negligible, that is when the specific resise

tivity is relatively high.
A central problem in the design of oxide-stripe lasers is the

assurance of firm lateral guidance of the EM wave which is
provided by the gain profile. The curvature at the center
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Fig. 4. Current density distributions injected into active region as a
function of stripe width. All other parameters are as in Table I.
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Fig. 5. Current density distributions injected into the active region as a
function of the thickness of the resistive layer. All other parameters
are as in Table I.

d2g/dx2 I~.. is a measure of how well the laser resists the

flattening of this profile at higher outputs when spatial hole

burning depletes the carriers in the center [16]. When this

curvature becomes zero or negative, guidance ceases and kinks

or instabilities appear in the light-current characteristics. The

requirement d2g/dx2 I~.. >0 also means in first approximation

that d2n/dx2 IX.O >0.

Fig. 6 shows the variation of d2n/dx2 I~.. = n“(0) as a func-

tion of stripe width. The decrease is practically exponential

indicating that narrow stripe widths significantly improve the

lateral guidance.

The effect of the specific resistivity p is shown in Fig. 7. All

three curves begin to saturate above p >0.3 Q “ cm. Above

this value, the effect of the p-n junction -on the solution of the

potential problem becomes negligible, and the solution of the

two problems can be separated from each other. The exact

solution of the potential problem is then given by the simpler

first part of (11) as the second, containing the potential,

vanishes as p ~ ~. This j (x) serves then as the driving function

of the diffusion problem. Below P -0.3 f2 “ cm, all three

curves decrease rapidly. The decrease of rJ’’(O) points to a

dilemma because of the above-mentioned reasons of stability.

Low resistivities are desirable nevertheless to reduce ohmic

losses and improve temperature and aging characteristics. The

compromise between the conflicting requirements of low

thermal losses and good lateral guidance must necessarily lead

to narrow stripe widths. The validity of these considerations

was proven by the fact that it was possible, using these princi-
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Fig. 6. Curvature of carrier density distribution at the center as a
function of stripe width. Other parameters are as in Table I.
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parameters.

pies, to develop narrow-oxide-stripe lasers with outstanding

temperature stability (up to 120 ‘C) extremely low aging

(10-’ h-l at 100 “C) and smooth, kink-free characteristics up

to over 100 mW/facet in pulsed operation [25]. The effect of

the variation of other parameters was also studied, but the

results were less interesting and do not warrant detailed discus-

sion. One might mention that the variation of the ambipolar

diffusion constant D results only in minor changes, indicating

that the assumption of a constant D is justified, although

strictly speaking, ambipolar diffusion can only be described by

density-dependent diffusion constants.

The effect of B and ~D on the results, within a region of

reasonable values, was found negligible. The same applies to

the temperature dependence of the voltage across the p-n
junction.

IV. SUMMARY AND CONCLUSIONS

Analysis of lateral guidance in stripe geometry DH lasers

requires the knowledge of the lateral distribution of the com-

plex refractive index which is proportional in first order to the

charge carrier density present in the active region. A complete

solution of this problem requires knowledge of the carrier

density distribution which can be obtained by the simulta-

neous solution of two boundary value problems: the diffusion

equation for the carriers in the active region and Laplace’s
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equation for the current distribution in the resistive layer.

These two boundary value problems are coupled by a nonlinear

relation at one of the boundaries. In this work, an exact solu-

tion of the two-dimensional Laplace equation is given. The

result expresses the current density distribution along the

junction plane in terms of an arbitrary potential distribution

along the same plane. The mathematical technique is applica-

ble to any stripe width to resistive layer thickness ratio. Any

relationship between potential and carrier density at the p-n

junction can be used, such as the customary Boltzmann ap-

proximation or the more accuratei Fermi-Dirac formula. The

diffusion equation was solved numerically employing nonlinear

spontaneous recombination terms applicable to bimolecular

recombination. An iterative process led to a self consistent

solution to both problems,

One of the results of the calculation was the recognition that

the current density supplied by the stripe contact has an

integrable singularity at the two edges of the stripe. Further-

more, local minima may appear in the center of the current

density distribution injected into the active region particularly

at low resistivities and wide stripe widths.

The calculations point towards the need of finding a suitable

compromise in choosing the specific resistivity of the resistive

region. On the one hand, one would require low resistivities in

order to reduce ohmic losses and temperature rise. Resistance

to spatial hole burning and ensuring kink-free characteristics,

on the other hand, call for higher specific resistivities. A satis-

factory compromise can only be found when very narrow

stripe widths are chosen.

In sheet-resistance models, which are used widely according

to the published literature, the behavior of the current density

distribution is characterized, among other things, by the

sheet resistance p/a. Our solutions show otherwise; p, a and

other geometrical factors influence the solutions indepen-

dently. The results further indicate that the usual assumptions

about the current distribution and the one-dimensional treat-

ment of the resistive layer are not always justified, particularly

for low values of p and s. This region of p ands values, how-

ever, is exactly the one of great practical interest if one

wishes to design oxide-stripe lasers having high temperature

stability and kink-free light-current characteristics. For larger

values of the resistivity (p >0.3 cm,) the solution of the po-

tential and diffusion problems can be separated from each

other. The current density distribution along the injecting

interface can then be approximated by a relatively simple I

expression, which is also the exact solution of the potential

problem for p ~=.

APPENDIX A

The transformation mapping the configuration of Fig. 2(a)

into the periodic rectangle of Fig. 2(b) is

Jz’(~)=c1 fj [$,(w) - ~M, #M-’) /fll-l
/J=l

. fi [84(W - ~u, +~”-’)q-’ Cho+ C2. (Al)

TABLE II

THE CONSTANTS OF THE CONFORM MAPPING

01,4 is the 81,4 function of Weierstra& n is the number of

points on the lower line and m is the number of points on the

upper line of the periodic rectangle. The angles o+ and /-iv are

the interior angles of the original configuration, the constants

d~, eV are the x-coordinates in the w plane and C’l, C2 are

complex constants. The values of the constants are given in

Table II.

The resulting transformation is

J
w

z (w) = c1 79;1(W- +, T)O;l(W-; ,7)
o

The following equations determine the unknown constants Cl,

c~, r [19]:

Z(w) =.z(w+ 1) (A3)

z(w+r)=z(w)+2ja (A4)

z(0) = 2ja (A5)

z(r/2+~)=ja+ s/2. (A6)

We have eight real equations for five real parameters. There

are more equations than unknown constants because of the

assumption of symmetry. Since the integrand is a double

periodic function, it c& be expanded in

Weierstra8 [24]

the { function of

- f(W - ~, T)+ ~(~/2, r)] dw+ C,.

The integral yields

~l(w- b)+D
z(w) = -B in

01(w+~,7) “
(A7)

The r.rnknown constants such asB, D, and T can be determined
using the equations (A3)-(A6). The result is

z(w) = s/2+ ~< in [tn(2K(k2) (w - *), k2)]
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with

k2 = 1- e-nsla.

APPENDIX B

The numerical evaluation of (1’1) presented some problems

as the series in the second term converges only slowly. A way

out of this difficulty is the splitting of the series

()
~ C,n 4rrn coth 2rrn $ Cos (4r’rn u (x)) (Bl)
r’r=l

into the following two parts:

+ ~ C2,, 4rrn cos (4rrrru(x)). (B3)
n=l

coth (4rrnK’/K) - 1 is rapidly decreasing with n and we only

have to calculate a few coefficients C2,, for this part of the

series. The second part can be converted into a more suitable

form. We notice that

~ C,n 4rrn cos (4rrnu(x))
n=l

is the imaginary part of

~ C,n 4rrrrie’4mnu(x) = F’(u).

?1=1

(B4)

The real part of F’(u) is the derivate of the potential at the

active layer (apart from a factor du/a’x). Because F(u) is

analytic in the upper half-plane we can calculate the imaginary

part from the known reaf part with the aid of the Hilbert

transformation.

a:

B:

D:

:g :

f(n):

i:

I:

i:

.iXrl:
jxp :

h.. .

k~ :

K(k):

,K’(k):

1:

n:

iv 1.2:

GLOSSARY OF SYMBOLS

thickness of the resistive region,

quadratic recombination constant,

ambipolar diffusion constant,

elementary charge,

bandgap,

recombination term,

imaginary unit,

current,

current density,

~-component of the electron current density,

.wcornponent of the hole current density,

modulus of elliptic integral,

Boltzmann’s constant,

complete elliptic integral of the first kind,

associated complete elliptic integral of the first

kind,

length of the laser,

electron density,

effective densities of state for electrons and holes,

respectively,

p: hole density,

P(w): complex potential,

s: stripe width,

trz-l (y, k): inverse of the Jacobian elliptic function,

T:

U(X>y):

U(n(x)):

v
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temperature,

potential,

potential at the active region-resistive region

interface,

voltage drop across the active region,

interior angles in the z-plane,

interior angles in the z-plane,

{ function of Weierstrai3,

quasi-Fermi levels for electrons and holes,

01,4 functions of Weierstrafi,

specific resistance,

width of the period rectangle,

spontaneous recombination lifetime.
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